Write the slope-intercept form of the equation of the line described.

1) through: \((-2, 2)\), parallel to \(y = -x - 5\)
2) through: \((-1, 5)\), parallel to \(y = -9x - 5\)

3) through: \((-2, 0)\), parallel to \(y = -\frac{3}{2}x - 2\)
4) through: \((-3, 4)\), parallel to \(y = -\frac{4}{3}x + 3\)

5) through: \((-2, 2)\), perp. to \(y = -x + 5\)
6) through: \((-3, 1)\), perp. to \(y = \frac{3}{5}x + 2\)

7) through: \((3, 5)\), perp. to \(y = -\frac{3}{4}x + 5\)
8) through: \((4, -3)\), perp. to \(y = -2x + 1\)

Determine whether or not the two lines are parallel, perpendicular or neither.

9) \(y = 3x + 1\)
 \(y = \frac{1}{3}x + 1\)

10) \(y = 5x - 3\)
 \(10x - 2y = 7\)

11) \(-2x - 4y = -8\)
 \(-2x + 4y = -8\)

12) \(2y - x = 2\)
 \(y = -2x + 4\)

13) \(4y = 3x + 12\)
 \(-3x + 4y = 2\)

14) \(8x - 4y = 16\)
 \(5y - 10x = 3\)

15) \(2x + 6y = -3\)
 \(12y = 4x + 20\)

16) \(2x - 5y = -3\)
 \(5x + 27 = 6\)